
ENS de Lyon Algèbre 1
L3 2024-2025

TD 4 : groupe symétrique

Les exercices marqués d’un seront corrigés en TD, si le temps le permet.

Exercices importants

Exercice 1.
Soit σ =

(
1 2 3 4 5 6 7 8 9
4 6 9 7 2 5 8 1 3

)
∈ S9.

Déterminer sa décomposition canonique en produit de cycles disjoints, son ordre, sa
signature, une décomposition en produit de transposition ainsi que σ100.

Exercice 2. (Générateurs de An)
Soit n ⩾ 3.

1. Rappeler pourquoi An est engendré par les 3-cycles.
2. Démontrer que An est engendré par les carrés d’éléments de Sn. Est-ce que tout

élément de An est un carré dans Sn ?
3. Démontrer que pour n ⩾ 5, An est engendré par les bitranspositions.
4. Démontrer que An est engendré par les 3-cycles de la forme (1 2 i) pour 3 ⩽ i ⩽ n.
5. En déduire que si n ⩾ 5 est impair, alors An est engendré par (1 2 3) et (3 4 · · · n)

et que si n ⩾ 4 est pair, alors An est engendré par (1 2 3) et (1 2)(3 4 · · · n).

Exercice 3.
Soit n ⩽ 5. Démontrer que deux permutations de Sn sont conjuguées si et seulement si

elles ont même ordre et même signature. Vérifier que c’est faux si n = 6.

Exercice 4.
1. Soit H un sous-groupe distingué de Sn pour n ⩾ 3.

(a) Montrer que si H ∩ An = An, alors H = An ou H = Sn.
(b) On suppose que H ∩ An = {Id}. Montrer que H est d’ordre au plus 2 puis que

H est trivial.
(c) En déduire la liste des sous-groupes distingués de Sn pour n ⩾ 5.

2. Quels sont les sous-groupes distingués de Sn pour n = 2, 3, et 4 ?
3. Pour quels n ⩾ 2 existe-t-il un morphisme de groupes surjectif de Sn dans Sn−1 ?

Exercice 5. (Théorème de Wilson)
Soit p un nombre premier.

1. Montrer qu’un élément de Sp est d’ordre p si et seulement si c’est un p-cycle.
2. Soit S un p-Sylow de Sp. Combien de p-cycles contient S ?
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3. En remarquant que 2 p-Sylow distincts de Sp ont toujours une intersection réduite au
neutre, calculer le nombre p-Sylow dans Sp.

4. En déduire que (p− 1)! ≡ −1 (mod p).

Exercice 6. (Sous-groupes d’indice n de Sn)
Soit n ⩾ 2 et H un sous-groupe d’indice n de Sn. On va démontrer que H ∼= Sn−1.

1. Démontrer le résultat pour n ⩽ 3.
2. Soit n = 4.

(a) Démontrer que H n’est pas cyclique.
(b) Démontrer qu’il existe σ, τ ∈ H tels que σ3 = τ 2 = Id, que H n’est pas abélien,

et que H = {Id, τ, σ, σ2, στ, τσ}.
(c) En déduire que H ∼= S3.

3. Soit n ⩾ 5. On fait agir Sn par translation à gauche sur l’ensemble X := Sn/H.
(a) On note φ : Sn → S(X) le morphisme de groupes associé. Démontrer que φ est

un isomorphisme.
(b) En considérant l’action induite par le sous-groupe H sur X. Démontrer que H ∼=

φ(H) ∼= Sn−1.

Exercice 7. (Autour de S4)
1. Montrer que les sous-groupes distingués de S4 sont {Id}, V4, A4, et S4, où V4 est le

groupe des doubles transpositions (aussi appelé Groupe de Klein).
2. Déterminer un isomorphisme entre S3 et S4/V4.

Exercices supplémentaires

Exercice 8. (Autour de A4)
1. Démontrer que si τ est un 3-cycle et σ est une bitransposition, alors ⟨σ, τ⟩ = A4. En

déduire que A4 n’admet pas de sous-groupe d’ordre 6.
2. (a) Donner la liste des classes de conjugaison de A4.

(b) Justifier qu’un sous-groupe distingué strict de A4 ne contient aucun 3-cycle.
(c) En déduire que V4 est l’unique sous-groupe strict non-trivial et distingué de A4,

et une autre preuve du fait que A4 n’admet pas de sous-groupe d’ordre 6.

Exercice 9.
Soit G un groupe d’ordre n. On rappelle que l’action par translation à gauche de G sur

lui-même induit un morphisme de groupes injectif ρ : G → Sn.
1. Soit g ∈ G d’ordre k. Montrer que ρ(g) est un produit de n/k k-cycles.
2. À quelle condition a-t-on ρ(G) ⊂ An ?
3. A quelle condition a-t-on ρ(G) ∩ An = {Id} ?
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Exercice 10. (2-Sylow de S4)
1. Donner le cardinal d’un 2-Sylow de S4.
2. Quels sont les nombres possibles de 2-Sylow de S4.
3. Soit D4, le groupe d’isométrie du carré de sommets 1, i, −1, et −i. Il est constitué des

rotations d’angles 0, π/2, π, et 3π/2, et des symétries par rapport aux droites R, iR,
(1 + i)R, et (1 − i)R.
En faisant agir D4 sur l’ensemble {1, i,−1,−i}, montrer que l’on a un morphisme
injectif D4 ↪→ S4.

4. Quelle est l’image de ce morphisme ?
5. En déduire que S4 possède 3 2-Sylow tous isomorphes à D4.
6. (Plus difficile) Montrer que l’action de S4 sur ses 2-Sylow, donne un morphsime de

groupes S4 → S3 de noyau V4.

Exercice 11. (Isométries du tétraèdre)
Soit T un tétraèdre régulier dans R3 centré en 0. Démontrer que l’ensemble des isométries

vectorielles de R3 qui stabilisent T est un groupe isomorphe à S4. Que dire du sous-groupe
constitué uniquement des isométries positives ?

Exercice 12. (Groupe simple d’ordre 60)
On va montrer que le seul groupe simple d’ordre 60 est A5. Soit G un groupe simple

d’ordre 60.
1. (a) Montrer que G admet exactement 6 5-Sylow.

(b) En déduire un morphisme injectif φ : G → S6. On note H l’image de φ.
(c) Justifier que H est inclus dans A6.

2. (a) On fait agir H sur A6/H. Justifier qu’un élément de A6/H est fixé par tous les
éléments de H.

(b) En déduire un morphisme injectif ψ : H → S5.
(c) Conclure que G est isomorphe à A5.

Exercice 13. (Automorphismes de Sn)
Soit n ∈ N∗. On va chercher à montrer que les automorphismes du groupe Sn sont les

automorphismes intérieurs.
1. Soit φ ∈ Aut(Sn). On suppose que pour toute transposition (a b), φ((a b)) est aussi

une transposition.
(a) Montrer qu’il existe a1, a2, a3 ∈ J1, nK distincts tels que φ((1 2)) = (a1 a2) et

φ((1 3)) = (a1 a3).
(b) Soit k ∈ J4, nK. Montrer qu’il existe ak ∈ J1, nK tel que φ((1 k)) = (a1 ak) et

justifier que l’application σ : k 7→ ak est un élément de Sn.
(c) Conclure que φ est l’automorphisme intérieur (g 7→ σgσ−1).

Pour prouver que les automorphismes de Sn sont intérieurs, il suffit donc de prouver qu’un
automorphisme envoie toujours les transpositions sur les transpositions. Soit φ un automor-
phisme de Sn.
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2. Justifier que pour une transposition σ, φ(σ) un produit d’un nombre impair de trans-
positions à supports disjoints.

3. Méthode par dénombrement : Pour σ ∈ Sn, on note Z(σ) = {τ ∈ Sn, τσ = στ} le
centralisateur de σ.
(a) On note σ =

n∏
k=1

σk,1 · · · σk,ℓk
la décomposition en cycles à supports disjoint de σ.

C’est-à-dire que pour tout k ∈ J1, nK, les (σk,i)1⩽i⩽ℓk
sont des k-cycles et tous les

(σk,i)k,i ont leurs supports disjoints.
Montrer que #Z(σ) =

n∏
k=1

ℓk!kℓk .

(b) Soit σ un transposition. On suppose que φ(σ) est un produit de k transpositions
à supports disjoints. En déduire que

(
n−2
2k−2

)
(2k−3)(2k−5)···3×1

k
= 1.

(c) En déduire que φ est intérieur sauf éventuellement si n = 6.
4. Méthode algébrique :

(a) Montrer que pour une transposition σ, Z(σ) ∼= Z/2Z × Sn−2.
(b) Montrer que si σ est un produit de k transpositions à supports disjoints, Z(σ)

contient un sous-groupe distingué N isomorphe à (Z/2Z)k.
(c) En déduire que si φ envoie une transposition sur un produit de k transpositions

à supports disjoints, Sn−2 admet un sous-groupe distingué isomorphe à (Z/2Z)k

ou (Z/2Z)k−1.
(d) En déduire que φ est intérieur sauf éventuellement si n = 6.
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